On Github sballesteros / inference_unix
cat theta.json | simplex -M 1e4 | ksimplex -M 1e4 | mif -M 1e2 > mle.json
cat index.html | wc
ls | grep .html | wc -l
Code → Inference
plug-and-play methods require only simulations from a model
Semantic → Code → Inference
"model": [
{"from": "S", "to": "I", "rate": "beta*S*I/N"},
{"from": "I", "to": "R", "rate": "v"}
],
"white_noise": [
{
"reaction": [{"from":"S", "to": "I"}],
"sd": "sto"
}
]
{
"beta": {
"transformation": "log",
"unit": "D"
"guess": {"NewYork": 90, "Paris": 120}
},
}
cat theta.json | simplex -M 1e4 | ksimplex -M 1e4 | mif -M 1e2 > mle.json
[
{
name: "lhs_simplex",
id: "lhs",
H: 500,
cmd: [
{
comment: "Get the initial conditions",
fit: "-D -p -I",
algorithm: "simul ode -T 100000"
},
{
comment: "First simplex",
fit: "-D -X -p -r rep -j",
algorithm: "simplex -M 10000 --no_trace --prior"
},
{
comment: "We chain ksimplex",
fit: "-B -u 0.01",
algorithm: "ksimplex -M 10000 --no_trace --prior",
repeat: 19
}
]
},
{
reduce: "best"
},
{
name: "pMCMC_sampler",
id: "replicate",
H: 19,
cmd: [
{
comment: "Get a covariance matrix",
fit: "-D",
algorithm: "kmcmc -M 20000 --full"
},
{
comment: "sample",
fit: "-D -C",
algorithm: "pmcmc -M 1000000 -J 1000 --full -C"
}
]
}
]
>